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Problems of the dynamics of flexible multibody systems (FMBSs) and its relation to the fundamental system of equations obtained 
by Poincar6 about 100 years ago [1] are considered. These equations, called the Poincar6-Chetayev equations, are now well known 
as the basis of the Lagrange reduction theory. By extending these equations to the case of the motion of a Cosserat medium it 
is shown that in the dynamics of FMBS it is possible to use two principal systems of equations. It is proved that a generalized 
Newton-Euler model of FMBSs in projections onto floating axes and the partial differential equations of the non-linear, 
geometrically exact theory within the Galilean approach comprise the Poincar6-Chetayev equations. �9 2006 Elsevier Ltd. All 
rights reserved. 

Interest in the dynamic modelling of flexible multibody systems (FMBSs) [2-10] is due to its applications 
in the dynamics of systems of two types: rapid light industrial manipulators and large space structures. 
Depending on which relations are used to describe the link strains, two approaches can employed to 
model such systems. 

The first of these, termed "the floating frame approach" [5-10], is often limited to the region of linear 
elasticity, since, within its framework, the link strains are regarded as modal perturbations of the principal 
motions of certain mobile structures. In this approach, the most effective algorithms for simulation and 
control are based on the New-Euler model [5-9], which is opposed by Lagrangian models [10]. Various 
methods have been proposed for deriving the Newton-Euler model of FMBSs. Initially, Euler and 
Newton's laws, together with the method of projections, were used for the derivation [5]. As an 
alternative, it was suggested [6] that Lagrange's equations in quasi-coordinates should be used. The 
application of non-holonomic velocities made it possible to use Hamel's equations [7]. The same model 
can be obtained from the virtual energy principle [8] and using Euler's Lagrange's concepts of the 
description of motion [11]. For floating frames (systems of coordinates), the Newton and Euler 
formulation of dynamics has many advantages compared with Lagrangian dynamics. Above all it requires 
less computational time since, within its framework, it is possible to describe the dynamics of individual 
links and to connect these descriptions using a recursive kinematic chain model. Furthermore, the 
dynamic quantities which occur in such a description allow of a simple physical interpretation, which 
cannot be said of the Lagragian approach, in which the same quantities occur in the kinetic energy in 
the form of complex expressions. This advantage is crucial when an attempt is being made to add to 
the consideration certain non-linear effects such as, for example, the effect of dynamic stiffening [12]. 
Finally, owing to its recursive nature, this model can also be used when fast direct [13] and inverse [14] 
o(n) algorithms are being employed, where n is the number of links. 

Another theory, the Galilean theory, was first developed for large space structures allowing of finite 
strains and low stresses [2-4]. The following main observation relates to this theory: if elastic 
displacements are of the same order of magnitude as rigid body displacements, the problem of their 
separation becomes artificial, and, to separate such motions, too many additional assumptions are 
required. Thus, in this theory, the systems of coordinates for the link strains are Galilean, and for the 
distribution of links they are global. For the most part, this approach has been based on Reissner's beam 
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theory [15], in which each structural cross-section remains rigid (a Cosserat medium [16]). The 
configuration space of such a system may be identified with SO(3) x R 3 using a map that fits points 
from this space to the material line of a beam. A numerical procedure that has been used [2-4] to solve 
the problem of the rotational motion in weak form rested largely not on one but on a collection of 
parameters from the corresponding space, as is the case in the Lagrangian approach. The method is 
based on reducing the order using a three-dimensional finite element method and on a Newmark implicit 
one-step integration scheme. The standard Newmark "predictor-corrector" scheme has to be modified 
since the curvature of SO(3) space prevents standard linear operations in vector spaces. Since this 
obstacle is overcome by projection of the dynamics onto the initial configuration, the non-linear Cauchy 
problem is replaced, using Newton's procedure, by a finite sequence of linear problems. To determine 
the linear dynamics in tangent space, accurate internal linearization in weak form is achieved by 
differentiation in absolute space. Since no approximations are made before carrying out spatial and 
temporal discretizations, such an approach is termed "geometrically accurate". 

The aim of the present paper is to show that these equations, or, more accurately, the equations of 
the generalized Newton-Euler model of FMBSs in the associated system of coordinates, and the 
equations of the geometrically accurate model of a multibeam system in a Galilean system of coordinates 
can be represented directly in the form of the set of equations discovered by Poincar6 [1] and improved 
by Chetayev [17, 18]. These equations, known today as the Poincar6-Chetayev equations [19-21] or 
Euler-Poincar6 equations [22], represent a generalization of Lagrange's equations on an optimal 
commutative Lie group [23, 24]. In the dynamics of FMBSs, unlike standard structural dynamics, elastic 
elements of the mechanism not only undergo strains but also perform motions as a rigid whole. This 
is a peculiar feature of Poincar6's results. 

In Section 1 we introduce the notation and the basic concepts. In Section 2, following with the 
construction of the Cosserat brothers [24], the Poincar6-Chetayev equations are extend to the case of 
a continuum. In Section 3 these equations are applied to an important FMBS - an open-loop flexible 
manipulator. 

1. NOTATION AND BASIC DEFINITIONS 

We will briefly recall the definitions of the following tools of differential geometry (cf. [23], Appendix 
2) that will be used below. 

Let G be an n-dimensional Lie group of transformations R 3 ~ R 3 with a unit e. The motion of a 
material system in configuration space G is defined by the map g: t ~ R + ~ g(t) ~ G. In R 3 space, where 
the motion is taking place, a set of transformed configurations Z(t) = g(t)Y~o ~ R 3, t ~ R~Cis defined, 
where Z0 ~ R3 is the initial configuration of the system, also called the "material space". The Lie algebra 
of group G is denoted by ,q and is defined as the space TeG tangent to G at e, endowed with a Lie bracket 
[, ]. We will introduce on G an internal product (,) and define g* as the vector space of 1-forms on G. 

Let Lg and Rg be the left and right translations on G, and let Lg,  and Rg, be the tangent space maps 
induced by these translations. The translations Lg and Rg, by means of the internal product, induce 
cotangent maps L~ and R E reciprocal to the maps Lg, and Rg, respectively. Differentiation of group 
automorphism Adg: h ~ G ~ Rg_j(Lg(h)) at the point h = e gives the action map Adz, of group G on 
~. Then the differentiation of Adg, with respect to g at g = e defines the adjoint map ad(.), of the map 
g ~ ~. By means of its duality, the map ad(.), defines the co-adjoint ad~.),: g ~ g. The left-invariant 
(right-invariant) field on G comprises a vector field that is invariant in relation to Lg, (Rg,). 

The vector space of the left-invariant (right-invariant) vector fields on group G, endowed with a Poisson 
vector field bracket [, ], realizes a different definition of space ,q. On account of its duality, the vector 
space of the left-invariant (right-invariant) 1-forms on group G realizes a different definition of the 
space g*. The action space g - (Te, G, [, ]) is identical to the space of infinitesimal transformations 
applied to the reference configuration Z0 ('right' or 'material' transformations) or to the actual 
configuration Z(t) ('left' or 'spatial' transformations). Alternatively, the space of left-invariant (right- 
invariant) fields realizes a different definition of material (spatial) infinitesimal transformations. 

To write out the dynamic equations of the material system in terms of infinitesimal material (spatial) 
transformations is to describe the dynamics in a "material (spatial) approach". Subsequent calculations 
are conducted "in coordinates", as in the original papers by Poincar6 and Chetayev. Agreement 
concerning the summation over repeated indices is assumed everywhere, apart from the cases specified 
at the end of Section 2. Finally, we will sometimes use the notationf(xl . . . .  x~) = f(xl)(l = 1 . . . .  , k)  for 
any function f, the vector x and the integer k. 
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2. THE P O I N C A R I ~ - C H E T A Y E V  E Q U A T I O N S  F O R  A COSSERAT 
M E D I U M  

A Cosserat medium comprises a continuum of microbodies, for example, beam cross-sections, the 
transverse rigid material lines of a shell, or grains in a micropolar continuum [25], and the spatial 
configurations of the medium can therefore be described by the action of an n-dimensional group G 
(in a typical case - SE(3) or SO(3)) on an elementary rigid microbody at each point of the submanifold 
D of the reference configuration of the medium (reference lines for a beam or reference membranes 
for a shell). Unlike to the finite-dimensional case studied by Poincar6 [1], transformations from the 
group are parameterized not only time but also by material coordinates X I ( I  = 1 . . . .  , p ,  p < 3) in 
the space D. We will denote the space of parameters (care must be taken, since these parameters are 
not group parameters) by P = R § x D, where R + is the time axis. We will denote in terms of x an 
arbitrarily chosen point P with the coordinates 

( x i ) i  = 0  . . . . .  p = ( t ,  X I ) I =  1 . . . . .  p = ( t ,  X )  

In order to write the Poincar6-Chetayev equations for a Cosserate medium, Hamilton's principle 
will be applied to a field of Lagragians of the form 

P 

~s P ~ A ( T * D ) ,  x ~ .~ (q (x ) ,  r l i )dV,  i = 0 . . . . .  p (2.1) 

Here, ~ is the Lagrangian density in the space D, T*D - i is the cotangent bundle to the space D , /k  is 
the external product, d V i s  the volume of thep-form in space D, and q(x) is the vector of group parameters 
of the actual transformation at the point X, applied to the microbody. Then, let 1]i(x ) be the actual 
infinitesimal transformation allowed by the body, i.e. the transformation of the translation along the 
ith coordinate line P passing through the point X that is examined the basis of space .q. 

Below we will concentrate primarily on the material approach since it is of greatest interest from the 
viewpoint of mechanics. In this approach, two interpretations are given to the quantities qi(x), depending 
on the adopted definition of the space .q. If this space is defined as (TeG,  [, ]), then 

q i ( x )  = Lg(x)-"(~s 'g(x))  = qi ( x ) ea  (2.2) 

Here and below ea is the basis of infinitesimal material transformations, i.e. transformations acting 
on material particles; unless otherwise stated, i = 0, ... ,p; I = 1 . . . . .  p; (z, I], Y = 1 . . . . .  n. On the other 
hand, if the Lie algebra is defined as the space of left-invariant fields furnished with a Poisson bracket, 
then the quantities q~ are defined by the relations 

rli(x) = ~ ,g(x)  = rli (x)X~x,g(x) (2.3) 
x 

where (X d g ~-~ Xa, g = Lg , (ea) ,  g e G )  is the basis of the left-invariant vectors on group G, and here 
the base point on G corresponds to the basis index. In fact, simple analysis of the differences of 
expressions (2.2) from expressions (2.3) indicates that the set of these vector fields on P realizes a unique 
vector field of 1-forms on P with values in the corresponding group of the Lie algebra q: P ~ g @ T*P  
[24], where @ denotes a tensor product. For example, if (TeG, [, ]) is adopted as a definition of the Lie 
algebra, then this vector fields, which has the form 

'q(x)  ( L g 4 . ( ~ x , g ) ) ( x ) d x  i = = qi  ( x ) e a  | d x  i (2.4) 

will define the infinitesimal transformation applied from the left to g(x), accomplished by a shift from 
an arbitrary point x to a point x + dx in space P. On the other hand, adopting left-invariant vector fields 
as the definition of the Lie algebra, this field of 1-forms can be represented in the form of the relation 

�9 O t  

r l (x)  = (Ox,g)(x)dx '  = ]]i (x)Xc~,g(x) ~ dx '  (2.9 

which delivers the replacement of g(x)  in the field of the left-invariant basis covering group G on 
transition from x to x + dx on P 

In order to apply Hamilton's principle to a Lagrangian density of the form (2.1), it is necessary to 
derive a formula which plays a key role in the variation calculus on non-commutative Lie groups. This 
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relation is a consequence of the fact that the variation 8 is achieved at fixed time and fixed material 
parameters. To substantiate this result, we note first of all that the variation of the functionf from C ~ (G) 
at the point g(x) has the form 

ct 
~f(g(x))  = ~g(x) f  = ~ (x)Xa, g(x)f (2.6) 

where fU(x) are the components of virtual infinitesimal transformations in the basis of left-invariant 
fields. On the other hand, the derivative of any function f with respect to the parameter x of the 
space-time curve 7:- x ~ R ~ T(x) ~ P passing through point x has the form 

d f ( g ( x ) )  d g ( x )  f (rlt~(x)Xa, | d x i ) ( f ,  ~x) cL i 
d"c - d'c a = g(x) -- ]]i ( x )~  (x )Xa,  g(x)f  (2.7) 

where ~ = ~i(X)~xi is the tangent vector to curve 7 at the point x. Moreover, we note that, in particular, 
when the condition ~ = x j is satisfied, the relation ~ = ~,, is satisfied, and expression (2.7) takes the 
form 

OxJ(g(x))  = (Ox jg (x ) ) ' f  = (rl~(x)X~g(x) |  Ox j) = rlj(x)Xa, g(x)f (2.8) 

and therefore, for a variation with a fixed time and a fixed position of the medium 

for any function f of class C ~ (G) and for any curve ~/passing through the point x. 
Substituting expressions (2.6) and (2.7) into equality (2.9) with g equivalent to x, we obtain 

d s f  - 5 ~  ~- ix  = qi ~ a,g( ~'~ Xf~,gf)-~f~Xf~,g(rl~iXa, gf)  = 0 

(2.9) 

Since this relation must be satisfied for any curve T, i.e. for any s e t  ~i, the condition that the parameters 
be fixed can be rewritten as 

r l ~ ( X a ,  g ~ ) (  Xfi, g f )  + rl~f~xe~, g( Xf~, s f )  - 

- ~a(x~,gn~)(x,~,~f)- ~Bqt~Xf~,g(Xu, gf) = O, ~/f ~ C~(G) 
(2.10) 

Using relations (2.6) and (2.8) we can find on the left-hand side of equality (2.10) both the terms 
~ ( X ~  ~rl~) = 8rl~ and rl~(Xa e.Q ~) = O~Jf~ and the Poisson bracket of the left-invariant basis vectors 
[Xa, X~] = c~Xywith the stru'ctu- re constants c~  of the Lie algebra ~. As a result, we have the following 
relations 

(2.11) 

Equations (2.11) generalize the corresponding one-parameter formula [1]. 
In exactly the same way, the condition that the parameters be fixed, expressed in the right-invariant 

basis, can be written as 

a a a 13 ~' 
8~i  = Oxi~-~ -- C~7~i ~'~ (2.12) 

where the structure constants in the right-invariant basis Za: g ~ Za, g = Rg.(e~), g ~ G are opposite 
to those in the left-invariant basis [22]. 

Before using Hamilton's principle, it is necessary to model the fields of external forces applied to 
the medium. Geometrically, the resultant of the actual forces applied to the microbody at the point X 
with configuration g(x) is an element of the space ~*. Therefore, we will define two fields of external 
forms with the values in the dual space of the Lie algebra - the field of external forces applied within 
the medium, which has the form 

P 
(x 

F: R § x D O ~ g* | A(T*D~ (t, X) ~ P = ~(x,  g(x))O)g(x ) | dV (2.13) 
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and the field of actual external forces applied at the boundary of the medium, which has the form 

P 
~7: R + x bD ~ g* | A(T*3D),  (t, X) ~ ~" = ~(x,  g(x))o~g(x ) | dS (2.14) 

where o)~: ~ ~ co~, g ~ G is the basis of the left-invariant 1-forms, dual to the basis Xa, and dS is the 
surface (p - 1)-form at the boundary aD. 

S(.)as = ~ (.)dS 
aD 

We will henceforth use the following notation of the integrals 

t2 

~(')dt = ~(')dt, f ( ' )dV = f ( ' )dV,  
t I D 

We will now write the modified Hamilton's principle 

~A = aff~(TlT, q")dVdt = f~W=xtdt, V~)g; (2.15) 

where A is the action of the Lagrangian, and ~Wext is the virtual work of the external forces applied to 
the medium. 

Proceeding to the variation of action, we have 

8A = ~ff~(rlr~, qfJ)dVdt = I 1 + I 2 

[1 = f l Y ' a r i e l  dVd', 12 = ~'~--~.aq pdVdt 
: : a q ~  aq" 

and, by virtue of constraints (2.11), 

11 : 111+ 112' I l l :  f f  ~-~-.~a ,~-~dVdt, 112 : ff~-ff'~C~,T]~i ~-~,dVdt (2.16) 
a a a l ] i  x alqi  

Since 

then the relations 

1, = ffFa,(a ea /+ a ,(a e =13dwa, 
t aaL ~,aq o / x \al]~t )_j 

O~ 3ce •a = ~ , ( b ~ a a  ) b ,(b~)12a (2.17) 
an, / ~ ~an~' / -  x ~an~'J 

integration by parts with respect to time and the fact that the variation fig(x) = f~X~, g(x) vanishes at 
the ends of the time interval, yield 

I11 = f f  ~'~ f~aNldSdt 
::arl~' 

where NI is the Ith component of the unit normal to the boundary bD. 
By virtue of relation (2.6) 

and the following equality holds 

~ q P  = ~q~aXa ,  g(q p) ~qP 

(2.18) 

(2.19) 
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Then, by virtue of relations (2.17)-(2.19), the modified Hamilton principle (2.15) takes the form 

0 ( (a'~Nt-~;~aeLdS+ 
= I,/,on; 

+S(_~iO~+cV.qf~OSEx3c~qr O~ f3 ~ ) . ~ d V ) d t  f~ ' ~rlri +'~q~Xa, g (q ) -  

Since the equation holds for any variation, i.e. for any independent f~', we have the following assertion. 

Assertion. In the space g*, identical to the space of left-invariant 1-forms, the field equation and the 
relations at the boundary have the form 

~Xi~i --  ~C('li ] ~ ~q~Xa, g(x)( q ) -  = e x (2.20) 

)~ Nt(x) - ~ ( x ,  g(x)) o)g(x ) O, Vx ~ R + x ~D (2.21) 
OTlt 

Note that, to calculate term (2.19) there is no need to introduce charts of parameters in space G. In 
fact, using the basis of infinitesimal material transformations (ea) of space (TeG, [, ]), we have 

8~-~ X~, g(ql~) (2.22) [ d ~ol (  x), Lg(~,( exp( eec,) ) ) ]r = o 

where exp: (TeG, [, ]) ~ G is the natural map of the Lie algebra into the group [23] and where the 
Lagrangian density is now a function of the transformations, i.e. ~ = ~(rl, g). 

The terms (2.22) are responsible for the defect of the symmetry of the Lagrange function in the 
material approach (cf. Remark 4 below). Now, if it is required to write the Poincar6-Chetayev equations 
in the spatial approach, the field of 1-forms with the values in Lie Algebra (2.5) is replaced by 

Ix(x) ( O x l g ) ( x ) d x  ! a = = Ixi (x)Zot, g(x) ~ dxi 

The application of the same calculation process to the spatial Lagrangian density ~(IX, q)dV, taking 
into account relation (2.12) instead of (2.11) yields 

( 3 o, • ~X'-"~3~[--- ~ "1" C~a~i (X)~IXi~, oq Za'g(x)(q~) = R+ DO (2.23) 

)~ ~ixiNl(X)-~~ ~'g(x) O, Vx~ R+x~D (2.24) 

where ks: g ~ )~,g ~ G is the basis of right-invariant 1-forms, dual to Za, and ~ and ~a are components 
of the fields of forms of the external and internal boundary forces in this basis, which, in the general 
case, depend on x and g(x). 

Finally, the terms 

~q Za.g(x)(%) = [ d  ~(ix(x), Rg(x)(exp(eea)))]~=o (2.25) 

are responsible for the defect of the symmetry of the Lagrange function in the spatial approach. Here, 
exp(eea) is now applied on the left ofg(x), so that ea is the basis of infinitesimal spatial transformations, 
i.e. transformations applied to the points of space. 

We will single out in relations (2.20) and (2.23) the components of the co-adjoint map ado: 
g* ~ g* in the dual to the left- and right-invariant bases respectively [24]. We will apply to each of 
the approaches (2.20), (2.21) and (2.23), (2.24) the cotangent maps L~(x) and R~(x). In the basis 
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f - L~(x)((Og(x)) - Rg(x)(Xg(x)) on ~, where the algebra ~ is now defined as (TeG, [, ]), the dynamics is 
definedby the equations 

O bY , 0 Y  
OxiOl] i adn,~-~, " - Xg(x)(~s ) = ~ ,  g x  �9 R + • D O (2.26) 

O~ ~ ,  Vx �9 R + ~-~tNl = x OD (2.27) 

where the following notation is introduced 

Xg(x)(~) = [d ~(rl(x),Lg(x)(exp(eea)))]E=o fa 

O~ O~ fa, ~ ~ a f a ,  ~ ~ a f a  O___~_~ = O f~ ,  On--'-* = ----ao = = 
O]]i O~i Oql 

(2.28) 

Similarly, in the spatial approach 

0 0 ~ + a d , 0 ~  R + D o . , ~ / / -  Zg(x) (~ )  = ~;, Vx �9 x 
Ox Ol'ti 

(2.29) 

- ~ I N t ( x )  = ~g, Vx  �9 R + x OD (2.30) 

where the following notation is introduced 

d 
Zg(x)~ = E - ~ ( t x ( x ) ,  Rgcx)( exp(eea) ) )]e = o f a  

aUi a~t7 ~11 = aU7 J ' ~ = 5gaf ' 
~ 0 t  

= ~ f  

(2.31) 

Note that, in relations (2.26) and (2.27), the basis fa is a dual basis to infinitesimal material 
transformations, while in (2.29) and (2.30) this is the dual basis to infinitesimal spatial transformations. 

Remark 1. Even if the system is continuous and in certain sense infinite-dimensional, the group used 
in the construction given above is finite but parameterized by the material manifold D (we will say that 
the group is measured on D [24]). This distinguishes the system under examination radically from systems 
examined in fluid mechanics, where the configuration space is an infinite-dimensional group [26]. In 
fact, the configuration space of Cosserat medium is the set ~ = {g: D ~ G}. 

Remark 2. Comparing relations (2.20), (2.21) and (2.26), (2.27) ((2.23), (2.24) and (2.29), (2.30) 
respectively), we note that the Poincar6-Chetayev equations are written in projections onto the same 
left-invariant (right-invariant) dual basis as the dual basis of the infinitesimal material (spatial) 
transformations. Consideration of the right- and left-invariant fields for determining the Lie algebra 
corresponds in fact to the well-known mobile-basis method proposed by Cartan [27] for investigating 
certain problems of integrability. This viewpoint also has it analogue in the action space of the group, 
where, as is well known, the material formulation in the components is similar to the spatial formulation 
in a mobile basis connected to body. 

Remark 3. When the parameter space P reduces to the time axis R +, the partial differential equations 
(2.26), (2.27) and (2.29), (2.30) degenerate into classical Poincar6-Chetayev ordinary differential 
equations [1]. 
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Assertion. Finite-dimensional Poincar6-Chetayev equations in the material formulation have the form 

d OL ad~0 _0L-Xg(t)(L ) = F,  V t ~  R + 
d t 3 q  o 013o 

Xg(t)( L ) = [L(rlo, Lg(t)( e x p ( e e a )  ) ) ] ~ .~ o f  c~, OL = OL f a  
(2.32) 

Finite-dimensional Poincar6-Chetayev equations in the spatial formulation have a form similar to (2.32): 

d ~L . ,  ~L 
~ - t ~  ~ + a%0~0 - Zg(t)(L ) = E,  ~/t ~ R + 

a ~L ~L f a  (2.33) 
Zg(t)(L) = [L(~t 0, R g ( t ) ( e x p ( e e t O ) ) ] e = o f  , O~to = O~to 

where L = L(rl0, g) (L = L(~t~ g)) is the Lagrange function of the system in the material (spatial) 
formulation, and F = Fa(t,  g ) f a  (E  = Ea(t ,  g ) f~ )  is the 1-form of the external material (spatial) forces 
applied to the system. 

R e m a r k  4. The above equations were generalized and connected with certain systems of equations 
of analytical dynamics by Rumyantsev [20] in the case when the Lie algebra of invariant fields is replaced 
by an arbitrary closed system of infinitesimal linear operators Xa. In this case, the Poincar6-Chetayev 
equations, in which the structure constants of the Lie algebra are replaced by variable coefficients cl~ ~, 
remain valid. 

R e m a r k  5. These equations are particularly intersecting when the Lagrangian and the density of 
external forces are independent of the configuration g(x).  This case has been widely studied [23, 22]. 
It relates to the Lagrange reduction theory. In the given context, if the Lagrange function of the system 
and, in the case examined here, the external forces also are invariant under left transformations (for 
a rigid body) or right transformations (for an incompressible fluid), then, once expressed in its Lie 
algebra, it becomes independent of the configuration. The resultant dynamic equations have the form 
(2.26), (2.27) or (2.29), (2.30), in which terms of the symmetry defect (2.22) (correspondingly (2.25)) 
no longer occur, and, furthermore, components of forces (2.13) and (2.14) (and their spatial analogues) 
are independent of the configuration. In modern terminology, the dynamics reduces to dynamics on a 
Lie algebra g of the group of symmetries of the system. Thus, these equations comprise partial differential 
equations in terms of the velocities "q0 or ~t0 only (for the Euler formulation). Consequently, they can 
first be integrated over time, and, only at the second step, owing to the equations 

t ) tg( (x) )  = Lg(x),( 'qo(X)) or O,g(x)  = Rg(x),(l.to(X)) 

is it possible to restore the motion of the medium. 

R e m a r k  6. If the group G is commutative, then 

X~ = Z,~, [Xa, Xa] = [Z,~, Zl~] = 0 

Consequently, the field of local bases (Xa) is derived from the set q~ of coordinate functions from the 
class C=(G)  and satisfies the relations 

Xa = ~ 4, co ~ = dq  eL 
g 

As a result we have 11 a = qa, and the velocities turn out to the integrable, i.e. holonomic. In the latter 
case, the Poincar6-Chetayev equations (2.32) and (2.33) degenerate into a unique system of Lagrange 
equations 

d,Oq   q )aq = o 
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3. APPLICATIONS TO F L E X I B L E  MULTIBODY SYSTEMS 

In order to demonstrate the application of the Poincar6-Chetayev equations to flexible multibody 
systems, we will examine the special case of a flexible manipulator. We will show how these equations 
enable us to write geometrically accurate equations in a Galilean reference frame and generalized 
Newton-Euler equations in a floating reference frame. Extensions to other forms of topology of 
multibody systems are straightforward. 

The partial differential equations for a flexible manipulator in a Galilean system of reference frame 
Kinematic Principles of a Body. In this approach, each body in the system is modelled in accordance 
with Reissner's non-linear beam theory [15]. Below we will examine the case of a rectilinear beam of 
initial length L of constant cross-section. Let ~]0 be the initial beam configuration. Its points are material 
particles whose positions X are equal to X'Ei in the material coordinate system (O, El, E2, E3), attached 
to 0~0, such that E1 is the material axis of the beam. In the spatial system of coordinates (O, el, e2, e3), 
taken practically to coincide with the material system of coordinates, the actual position of the particle 
X is specified in the form 

x(X, t) = xi(t, Xt)ei 

In Reissner's theory, the beam cross-sections are assumed to be rigid, and therefore they realize 
microbodies of a one-dimensional Cosserate medium. Thus, according to the general construction 
proposed in Section 2, the parameter space here is P = R + x [0, L]. The actual three-dimensional field 
of beam positions is determined by the action of the transformation %: ~0 ~ R3 parameterized by time 
and defined as 

x(t, X) = (pt(X) = Xlel + d(t, X x) + R(t, XI)(x2E2 + X3E3) 

VX = (X l, X 2, X 3) E ~'0 
(3.1) 

where d(t, X 1) is the actual translation applied to the centres of mass of the cross-section X 1, and 
R(t, X 1) is the rotation of this same cross-section. 

Transformation (3.1) can be rewritten in the homogeneous formalism as 

] x(t,X)l = II R(t'Xl)d(t'X')X'elO 1 ]1 r [ = g(t'XI) 1 (3.2) 

where the homogeneous 4 x 4 matrices g realize an SE(3) group of Euclidean displacements in three- 
3 dimensional space R .  Thus, the configuration space of the beam is realized as 

qg = {g: [0, L] ~ SE(3)} 

(see Remark 1). Furthermore, the field g acts on a subset of the set 

Y0: ~ = { r=  X2E2+X3E3/(XIEIE ~0)} 

which plays the role of a "typical" microbody. The Lie algebra of the SE(3) group, denoted by se(3), 
is identical here to the space of twists R 6, endowed with a product denoted by an asterisk such that 

~1.11 '= f~V * V' = 
~ X ~ '  R 6 

f ~ x V ' - f V x V  ' Vrl, rl '~ (3.3) 

In accordance with the material approach, the algebra se(3) is identical here to infinitesimal material 
rigid displacements with the basis 

Et t ' 0 t 2, 3 = ( e 'x )c~  = 1 . . . . .  6 
0 = 1,2,3 El = 1, 

(3.4) 
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and a field of 1-forms with values in Lie algebra (2.4) 

ri: R § x [0, L] ~ se(3) | T*(R § x [0, L]) 

ri(t ,X 1) = r i o | 1 7 4  1 = ~ ( t , X  1) 
V(t, X 1 ) 

|  K(t, X 1) | dX 1 
F(t, X l) 

(3.5) 

where ri0 and 111 are the twists associated with isomorphism between se(3) and R 6 in g-13tg and g-l~xlg 
respectively. It is intuitively clear that rl0(t, X 1) is a material infinitesimal transformation allowing the 
transition from mobile axes connected to the cross-section X 1 at the instant t to mobile axes at the instant 
t + dt. At  the same time, ril(t, X 1) is an infinitesimal transformation making it possible at a fixed time 
t to switch from mobile axes connected to the cross-section X 1 to mobile axes connected to the cross- 
section X 1 + dX 1. The dual space of the Lie algebra se(3)* is identical to the space of wrenches, 
isomorphic to R 6, the duality product of twists and wrenches reduces to the duality product in R 6. If 

q =  f~ , ~ .= A 

V W 

are arbitrary vectors from se(3) and its dual space respectively, then the co-adjoint action of 1] on ~ is 
defined as [22] 

ad,](~) = I Axf~+Wxvwxo (3.6) 

Measure of strains of  a body. We will now define the measure of the strains of a body adopted in Reissner's 
theory. There are two strain fields of the beam [2]: 

1. The vector field of material strains, which will be denoted by e and defined as 

= R T "  . X  I (t, X1)e R+x[0,  L] ~-->s I) Ox~CPt( , 0 , 0 ) - E l  = F(t, X 1 ) - E  I (3.7) 

where the vector component along E1 is measure of the stretching of the beam, while the other two 
relate to the transverse shearing. 

2. The field of material curvature 

(t, X I) e R+x [0, L] ~ RrOx,R = K(t, X1) (3.8) 

the material tensor of which has already been introduced by the second of equalities (3.5) through the 
field of the pseudovector K linked with K by the natural isomorphism so(3) ~ R" (this concept will be 
used systematically below). 

The Lagrangian of a body. We will now write the velocity field as 

~,%(X) = ~,d + (btR)r 

Assuming that the reference line of the beam passes through the centres of mass of the cross-sections, 
the kinetic energy will be expressed in the form 

L 

2T = ~ (~,%)2dm = paf[(3,d)r~,d + ((3,R)r)r(~tR)rdX 1] 

Z o 0 

where A is the cross-section area. Then, introducing the vector rl0: riT = (y~T, Vr), the expression for 
the kinetic energy can be rewritten as 

L L 

2jlf T 1 ~-(r i0)dX 1 ' J 0  T = 9rioJriodX = J = (3.9) 
0 0 0 J  
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where ~- is the kinetic energy density and pJ is the material tensor of inertia of the cross-section 

PJ = PI I  ?r?dx2dX3 = plp~l+Pla%2+pla~3; ~k = EkxE~, k = 1,2,3 
A 

Here, Ia and Ip are the axial and polar moments of inertia of a typical cross-section. 
Considering the case of an elastic material with small strains, and introducing the vector 111: 

T T T rh = (K,  (F - E  0 ), the strain energy can be approximated by the quadratic potential of measures of 
strains (3.7) and (3.8) 

L L jj 
1 I ,  , ! "rO T = ~ 111HI"IIdX = ~(rl t)dX 1, H = 0 H d 

0 
(3.10) 

where ~ is the energy density of the strains, Hd and Hr are the reduced Hooke's tensors for the beam 
in a material coordinate system 

H d = EA%I+GA%2+GA% 3, Hr = G l p ~ l + E l a % 2 + E I a ~ 3  

E is Young's modulus, and G is the tension modulus,s Finally, the Lagrangian takes the form 

'~(Tlo, '111 ) = ~"('rlo) - ~ 1 ) (3.11) 

and no longer depends on the beam configuration, i.e. is left-invariant. This is unsurprising since the 
left-invariance of the elastic potential corresponds to the principle of independence of the choice of 
coordinate system, while the right-invariance relates to the isotrophy of the elastic properties of the 
medium. On the other hand, the left-invariance of the kinetic energy corresponds to the isotrophy of 
space, while the right-invariance corresponds to the isotrophy of inertial properties of the material. 

The Poincard-Chetayev equations for a body. Field equations. A link is subject to the action of external 
left-invariant (follower) forces and moments 

(t, X l) ~ P = ~;dX t = ff2(t,n(t, XI)X 1) dX l (3.12) 

and of left-invariant (follower) forces and moments applied at its extreme points 

X 1 = 0: t ~/2"_(t) = 2~/_(t)~r_(t) ; X 1 = L: t ~ / % ( 0  = .~/§247 (3.13) 

Examining Eqs (2.26) and (2.27) withx ~ = t andx I = X 1, it is possible to derive the Poincar6-Chetayev 
equations for a free one-dimensional Cosserat medium with a Lagrangian density of the form (3.11) 

b bgJ- . ,  bff ~ D~ + a%,b--~l = ~ (3.14) 
btbrlo aarl~ bXlbrll 

The application of the co-adjoint maps ad~0 and ad~,, defined by relations (3.6), to the kinetic energy 
~- and the potential energy ~ for any (t, X a) e R + x ]0, L[ accordingly yields 

pJ(btf~ + f l x  Jf~) = 

pA(btV + ~ x V) 

3xlM + K x M + (RTOxIO) • N + ff~ 

OxlN+ K x N + h  
(3.15) 
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Here, we have introduced the position field of the reference line of the beam cpt(X a, O, O) = O0(t, X1), 
and also the force and moment of internal forces applied on the cross-section X 1 

H~K = M ( (O~)r  (3[s 

H ds g = ~'~'-~-K ) ' ~"~'F J J 
(3.16) 

where M is the moment of the field of internal forces applied to the cross-section and evaluated at the 
centre of mass of this section, and N is the resultant force. 

Equations at the boundary. The application of the general equations (2.27) with NI(0) = -1 and 
NI(L) = 1 yields 

a ~  ~ R + ~-~l(t,O) = -~'_(t), ~ l ( t , L )  = ~'+(t), t 

Finally, by virtue of equality (3.15) 

M(t, O) = M_(t) , 

N(t, O) N_(t) 
M(t, L) = M_(t) , t~  R § (3.17) 
N(t, L) N_(t) 

Equations (3.15)-(3.17) are Reissner's partial differential equations [15]. They can be interpreted 
as tensor equations in material space or, alternatively, as equations in terms of the components in a 

l 1 t field of mobile axes (R(t, X )El, R(t, X )E2, R(t, X )E3). To integrate these equations, they must be closed 
by means of Hooke's law, the equations Ot R = R ~  and 0t~ = RV, which make it possible to recover 
the change in configuration, and definitions of the strain measures. 

Remark. Reissner's equations were written [15] in the spatial formulation and were derived by applying 
the Poincar6-Chetayev equations (2.29) and (2.30) to the spatial Lagrangian, which also depends on 
the configuration. In this case, to obtain a correct result, it is necessary to calculate the symmetry defect 
Zg(.)(L ). 

Thepartial differential equations of  a flexible manipulator. Consider the special case of the motion of a 
manipulator in zero gravity. The manipulator consists ofp  links denoted (from base to end-point) by 
Bo, B1 . . . ,  Bp. The base B0 is assumed to be rigid and fixed, while the remaining links are modelled by 
Reissner beams. The links are connected by cylindrical hinges denoted (from base to end-hinge) by a a, 
a2.. . ,  ap. Torques xj are applied to the hinges, acting on the corresponding links aj (here and everywhere 
below, unless specified otherwise, j = 1, 2 . . . . .  p); it is assumed that these torques are concentrated at 
points. All the notation adopted is retained in the case of a single link, apart from a discarded index. 
The vectors aj are three-dimensional. We will define their material analogue as 

T 
Aj(t) = Rf(t, Lj)aj(t) = Rj+ t(t, O)aj(t) 

Using these material vectors, we will define the operator AJ: projecting any vector V onto the space 
perpendicular to A/  

• R 3 A~V = 1 0 0 Aj : ~ R 2, V ~ . ( V -  (AjV)V) 
0 1 0  

In this notation, the dynamics of the manipulator is described by a system of equations including: 
the field equations 

pj( J jOt~j + ~ j  x J j~j )  

pjAj(OtV j + ~ j  x Vj) 

R T ax,M j + Kj x Mj + ( jax ,~) j )  x Nj , 

OxeN j + Kj X Nj 
X l ~ ]0, Lj[ (3.18) 
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the equations for reconstructing the links configurations, written in accordance with the arbitrary reference 
position of the manipulator, 

~,Rj(t, X 1) = Rj(t, x l )~ j ( t ,  Xl), 3tr X l) = Rj(t, Xl)Vj(t,  Xl), X 1 ~ [0, Lj] (3.19) 

the equations for reconstructing the rotations at the hinges 

JRj§ ) = RT(t, L j )Rj . I ( t ,O) ,  ~ ) = Rl(t,O), j = 1 . . . . .  p - 1  (3.20) 

and the boundary conditions for the links 

Nj(t, O) = -fVj(t), Nj(t, Lj) = -fVj+ ,(t), Mj(t, O) = ~lj(t), Mj(t, Lj) = -~lj+ ,(t) 
(3.21) 

Np(t, O) = -fV v, Np(t, Lp) = O, Mp(t, O) = -~Ip(t), Mp(t, L )  = 0 j = 1 . . . . .  p - 1 

where the end-point of the manipulator is assumed to be free,/~, and M/are the force and torque acting 
on the link Bj from the Bj_I side, and ]~j and A~/~/are vectors of the Lagrange multipliers that were 
introduced in order for the following constraint conditions to be satisfied 

Vj(t, Lj) = JRj+ l(t)Vj+l(t ,  0), A~(t)aj( t ,  Lj) = A~(t)JRj+l(t)ny+l(t ,  O) 
(3.22) 

Vl(t,O) = O, A '~ l ( t ,O)  = 0; j = 1 . . . . .  p - 1  

The equations of  a flexible manipulator in the floating reference frame 
The kinematic participles of a link. In the approach based on the use of a floating reference flame each 
link of the manipulator is regard as a three-dimensional elastic body undergoing small strains 
superimposed on the finite motions as a whole. We will examine a typical flee link in the reference 
configuration 2~0 C R 3. We will provide the link 5"-0 with the material system of coordinates (O, El, E2, 
E3). The actual configuration of the body will be denoted by Z(t). It is embedded in the geometric space 
R 3 provided with a spatial system of coordinates (O, el, e2, e3). The material and spatial systems of 
coordinates will be examined together. 

In this approach the transformation %, mapping ]~0 onto Y(t), may be written as a composition of 
two transformations. The first of these is the pure strain mapping ]L0 onto Y.0(t); it is denoted by cp~. 
The second, denoted by (p~, comprises the displacement as a rigid whole, converting Z0(t) into ]~(t). In 
this way we have a sequence of transformations 

r e 
(p, = (p, o (p,: Z o ~ Xo(t ) ~ X(t) 

transferring the point mass X to a point in space x by the following rule 

X(t, X) = 9,(X)9~(9~(X)) (3.23) 

As earlier, the transformation corresponding to the displacement of points of the body as a rigid whole 
is written in the form 

~r,(x') = do(t) + R(t)X' (3.24) 

where X' is a point form E0(t), and do is the displacement of a reference point of the body. For elastic 
transformations it can be written as 

9et(x) = X' = X + d(t, X) (3.25) 

where d is the field of displacements of material origin, mapping the position of a particle in the reference 
configuration onto its image owing to pure strain. 

As earlier, the set of all transformations as a rigid whole realizes a Lie group SE(3), acting in the 
given case on the deformed configuration ]~0(t). Here, cpt is a point of diff(]~0) - the space of 
diffeomorphisms of the space R 3 into itself restricted to ~0- Moreover, the floating reference frame is 
identified with a mobile system of coordinates - an image of the material coordinate system - by a 
component delivering the transformation as a rigid whole. 
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With the composition of maps (3.23), the configuration space of the body forms the group 

G = SE(3) x diff(Z0) 

As regards the space diff(E0), we will replace it with final group 

m 

D(t,  X)  = ~ Oa(X)qa( t )  = ~cL(X)qn(t) ,  k / X e  E o (3.26) 
o t = l  

called the modal reduction, where ~a  represents the natural modes of the body under certain boundary 
3 conditions (the modal indices are denoted by Greek letters, and the indices in space R by Latin letters). 

They comprise material vectors, i.e. q~a = @~E/(. 
Such modal decomposition presupposes above all that the body is subject to small strains. Under 

these conditions, the group of diffeomorphisms diff(Y~0) is parameterized by a vector of modal 
coordinates q = (ql, q22, . . . ,  qmm)r and, from geometric considerations, is replaced by the linear space 
R m, i.e. a commutative Lie group. Then the Lie group G = SE(3) x R m realizes the configuration space 
of the elastic body, and any two transformations g and g' from this group G are composed as 

g o g '  = 
R d  

0 1  

q 

g '  d '  

0 1 

q' 

RR' Rd'  + d 

= 0 1 

q + q '  

(3.27) 

The Lie algebra g of group G is realized s se(3) x R m, and, owing to the natural isomorphism assigning 
6-. 6 + m  the space R to the space se(3), also as space R provided with a product, denoted by an asterisk, 

such that 

l ]  * ]1  t ~-~ 

f~ 

V * 
# 

V'  -- 

q' 

~ X ~ '  

~ x V ' - ~ ' x V  

(# + # ' ) - ( q  + 0') 

~ X ~ '  

= ~ x V ' - ~ ' x V  

0 

(3.28) 

where q, rf e R 6+m, and q = ( q l ,  1~2 . . . . .  qm)T is the vector of modal velocities (the dot denotes a time 
derivative). Furthermore, in accordance with the material formulation of the problem, the space R 6+m 
is identified with the space of infinitesimal material transformations of the basis 

(ect)ot = 1 .. . . .  6+m E1 I 0 I 0 eL= l,...,m = 0 , E t , 0 

0 = 1,2,3 0 = 1,2,3 ~qa 

Also, the 1-form with values in Lie algebra (2.4) is reduced to 

f2 
rl(t ) = rio(t) |  rio(t) = V 

O 

(3.29) 

where TI0 is a vector from R 6 + m, associated with Lg-a*(~,) by means of the isomorphism between se(3) 
and R 6, i.e. satisfying the relations ~ = Rr/~ and V = Rrdo . 

The dual space to the algebra se(3) x R m, that is, se(3)* x R m, is again the space R 6 + m. In it there 
are six first components - components of the wrench in the material system of coordinates, and m final 
components - components of the generalized modal forces. As regards the duality product, it is reduced 
to a duality product in R 6 + m space. Finally, the co-adjoint action of any vector ~ e g on any vector X 
from its dual space, by virtue of relation (3.29), has the form 
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adno A ad~(~) = W 
A x ~ + W x V  

= W x f l  

0 

(3.30) 

The Lagrangian o f  a single link Bearing in mind relations (3.24)-(3.26), from equality (3.23) we have 

q)t(X) = do(t ) + R( t ) (X  + ~ ( X ) q a ( t ) )  

and therefore the velocity field has the form 

(Pt(X) = do(t) + l~(t)(X + ~a(X)qa( t ) )  + R ~ ( X ) g t ~ ( t )  

Substituting this expression into the expression for kinetic energy of the body, and distinguishing the 
vector rl0 from the Lie algebra, we find 

l i (prt (Ptdm = 1 r ~ 1 .c~ .~ .a T = ~ ~mV V+ f f f J f~+~maf l  q q + v r ( f ~ x m s + a a q  ) + ~ r ~ d l a  

Zo 

where expressions for the kinetic energy of translation and rotation are written from left to right, followed 
by the expression for the kinetic energy of the strains, and, finally, mixed terms. Here, the following 
tensors are introduced (integration is carried out over points to link Z0) 

mctf~ = IdPTdpf~dm' a m = I~Padm' (xl~ = I X  x dpfjdm, ~'af~ = I~Pa x ~f~dm 

I I (  a ~'rvq' m = dm, ms = X + ~ a q  )dm, [~v = av + 

ct T T (~ 
J = I (X+dP~q ) ( X + ~ q f ~ ) d m  = Jrr+(Jre, a+Jer, ct)q +Jee, a[~qaq f~ 

Besides the kinetic energy, the potential energy of the strains is specified, defined as the quadratic 
form of the modal coordinates 

= Ka~qaq ~ = qrKq 2U 

where K is the matrix of modal stiffness. Finally, the Lagrangian of a free link takes in se(3) x R m the 
reduced form 

1 T 
L(ri0, q) = ~ri0.~rl0, 

1 T  
-~q  Kq, ~ = 

J m~[~ 

m~ r ml  a 
~T a T g 

(3.31) 

where I = diag(1, 1, 1), M = (mal~)a, 13 = 1 ..... m is the matrix of the generalized modal inertia, [3 = 
(131 . . . ,  13m) and a = (a l , . . . ,  am) are the matrices of material vectors, and m~ is a skew-symmetric tensor 
such that m ~  = ms • a~, Va~ ~ R 3. 

The Poincard-Chetayev Equations for a Link The finite-dimensional Poincar6-Chetayev equations (2.32) 
with Lagragian (3.31), having the form 

d OT + ad~o -0T0rIo- Xg(L) = 0 
d t ~ri o 

(3.32) 

after some reduction can represented as 

d't~-~0d 0T . .  _0T ~ ~ 

# 

J ~  + ~ x (Jf~ + ~(1) + ms x ( ~  x V) 
x (mV + 2S(l + ~ m s )  

I~rn 
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Here, we have taken into account the relations 

m~ = aadl a = aq, ~gl = ~agt a = 0 

g x ( ~ x m s ) - ~ x ( V x m s )  = ( V x ~ ) x m s  = m s x ( ~ x V )  

Now, since Lagragian (3.31) depends on the configuration only in terms of strains, expression (2.32) 
for the defect of the symmetry is written in the form 

d L  r r 

OL 1 r 1 ~ r 4~Ar~ + vr( ~ x am) - Kaf~q ~ Oqa-- = ~'2 (Jre, a+ Jer, a ) ~ + ~ q  ~ (Jee, afl+ Jee, f~a)~+ 

Noting that L~ = -~,a~ and that for any 3 x 3 matrix A 

-f~r((Ar + A)~) = - (Af~)rf~- f~r(Ag)) = -2f~rAt) 

the defect of the symmetry can be represented in the form of an m-dimensional column vector 

OqL = ~ r  Je~ ' a ~  - q ~ r  je~, a~ ~ + 2gl~rl~f~ + Ka~ql~ 

Here, the dynamics of a free elastic body in space 

g = se(3) x R m = R  6+m 

taking relation (3.32) into account, is defined by the equations 

j .[ 

el 

x J ~  + 2Jre ' a~O a + 2Jee ' af~qf~dl a 

2f~ x ad 1 + f2 x ( ~  x ms) 

[~T Jer" a ~ - q ~ r  Jee ' afl[~ + 2dll~,rfj~ + Ka~q fl 

0 

= 0 

0 
(3.33) 

where the material acceleration of the reference point 7 = 1,;" + ~ x V is introduced. 
Equation (3.33) are well known to specialists in the area of multibody mechanics in floating reference 

frames. Here, they correspond to the "generalized Newton-Euler model" for an elastic body [5-10]. 
They can be interpreted as tensor equations in material space or as equations in terms of components 
in the floating reference frame (R(t)E1, R(t)E2, R(t)E3). To integrate them it is necessary to close Eqs 
(3.33) with the equation/~ = RfL 

The generalized Newton-Euler model for a flexible manipulator We will now consider the same manipulator 
as in the first part of Section 3. Each link is now modelled using the approach associated with the 
introduction of floating reference frames attached to hinged points O1, 02, ... Op between the bodies, 
comprising the base of the mechanism; the modal functions of the form are defined by the same points. 
The wrenches induced by hinges belong to the slave-link type. If all the tensors are given the same indices 
as the links, the generalized Newton-Euler model for a flexible manipulator will be specified by three 
systems of equations: 

the equations o f  the dynamics of  the links 

Jrrj Jrej ~/j 
Jrej Jeej #j 

Cj Fj-JTj+IFj+I 
+ = j = 0 . . . . .  p (3.34) 

rj 
Cj -rYpj Rj + 1 Fj + 1 

the model o f  velocities 

Vj = JTj_IVj_ 1 + J R j _ l t ~ j _ l q j _  1 +glrjAj, j = 1 . . . . .  p (3.35) 
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the m o d e l  o f  accelerat ions 

("j = JTj I ~ ' j _ I + J R j _ I O j _ I ~ j _ I + H j ,  j = 1 . . . . .  p 

Relation (3.34) was derived from relation (3.33) using the replacement 

(3.36) 

and Fj is wrench applied from the j-th body to the next body. The 6 x m matrix Oj, determining the 
displacements and the rotations of the form vector of the j th  link, is defined at the point Oj + 1. The 
6 • 6 matrix JRj_ 1 specifies the transformation of the floating reference frame. The 6 • 6 matrix JTj_ 1 
corresponds to the transformation of the screw of the (j - 1)th link from intrinsic reference frame to 
that of the following body. The six-dimensional vector A j  defines the axis of the j th hinge. Finally, the 
vector Hj determines the Coriolis and centrifugal accelerations arising at the j th  hinge. 

Equations (3.34)-(3.36) were first written out in [5] and later in [6-9] (see [12-14] for details of their 
use in the dynamics of flexible multibody systems). 

4. C O N C L U S I O N S  

The proposed extension of the Poincar6-Chetayev equations to a Cosserat medium shows how the two 
principal sets of equations used in the dynamics of flexible manipulators can be described using natural 
language. The partial differential equations obtained within the Galilean approach form the basis of 
the geometrically accurate approach in a numerical investigation of flexible multibody systems [2-4]. 
On the other hand, the use of floating reference frame to describe the link strains makes it possible to 
identify configuration space with the Cartesian product of the SE(3) group and the space of generalized 
coordinates describing the strains. From the geometric viewpoint, reduction (trivialization) of the 
dynamics of the elastic body to smooth layering occurs, in which the commutative subgroup acts as a 
base manifold (here, the modal space or, more generally, the "space of forms"), while the layers are a 
non-commutative subgroup (here, SE(3)) [22]. We note, finally, that these equations have numerous 
applications in multibody dynamics; in particular, they have made it possible to construct 0(n) algorithms, 
where n is the number of links in problems of inverse and direct dynamics of a flexible manipulator 
in relative coordinates [13, 14]. The modern application of these equations in robotics touches on the 
study of the motion of systems with many joints. In this case the elastic manifold from the examples 
considered earlier is replaced by a manifold of joints of the multibody system. The control problem 
that arises consists of the following: what should the motions at the joints be to ensure, by control means, 
the possibility of adequate motion on SE(3)? This is the main question in the theory of the motion of 
animals [28]. 
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